An Application of Λ-method on Shafer-fink’s Inequality

نویسنده

  • Branko J. Malešević
چکیده

In the paper λ-method Mitrinovi´c-Vasi´c is applied aiming to improve Fink's inequality, and Shafer's inequality for arcus sinus function is observed. In monography [1, p. 247] Shafer's inequality is stated: (1) 3x 2 + √ 1 − x 2 ≤ asin x (0 ≤ x ≤ 1). The equality holds only for x = 0. In paper [2] Fink has proved the inequality: (2) asin x ≤ πx 2 + √ 1 − x 2 (0 ≤ x ≤ 1). The equality holds at both ends of the interval x = 0 and x = 1. Let us notice that from the inequality (1) and (2) the function g(x) = asin x is bounded by the corresponding functions from the two-parameters family of functions: (3) Φ a,b (x) = ax b + √ 1 − x 2 (0 ≤ x ≤ 1), for some values of parameters a, b > 0. For the values of parameters a, b > 0 the family Φ a,b (x) is the family of raising convex functions on variable x on interval (0, 1). Let us apply λ-method Mitrinovi´c-Vasi´c [1] on considered two-parameters family Φ a,b in order to determine the bound of function g(x) under the following conditions: (4) Φ a,b (0) = g(0) and d dx Φ a,b (0) = d dx g(0). It follows that a = b + 1. In that way we get one-parameter subfamily: (5) f b (x) = Φ b+1,b (x) = (b + 1)x b + √ 1 − x 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharpening and Generalizations of Shafer-fink’s Double Inequality for the Arc Sine Function

In this paper, we sharpen and generalize Shafer-Fink’s double inequality for the arc sine function.

متن کامل

An Application of Λ-method on Inequalities of Shafer-fink’s Type

In this article λ-method of Mitrinović-Vasić [1] is applied to improve the upper bound for the arc sin function of L. Zhu [4]. 1. Inequalities of Shafer-Fink’s type D. S. Mitrinović in [1] considered the lower bound of the arc sin function, which belongs to R. E. Shafer. Namely, the following statement is true. Theorem 1.1 For 0 ≤ x ≤ 1 the following inequalities are true: 3x 2 + √ 1− x2 ≤ 6( √...

متن کامل

Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function

In this paper, we give some sharper refinements and generalizations of inequalities related to Shafer-Fink's inequality for the inverse sine function stated in Theorems 1, 2, and 3 of Bercu (Math. Probl. Eng. 2017: Article ID 9237932, 2017).

متن کامل

Generalization of cyclic refinements of Jensen’s inequality by Fink’s identity

We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüssand Ostrowski-type bounds are found for identities associ...

متن کامل

محاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد

Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory  can be used as a uncertainty measurement of the system in specific situation In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006